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An important issue in the study of the iron-arsenic-based superconductors is the symmetry of the supercon-
ducting gap, a problem complicated by multiple gaps on different Fermi-surface sheets. Electronic Raman
scattering is a flexible bulk probe which allows one in principle to determine gap magnitudes and test for gap
nodes in different regions of the Brillouin zone by employing different photon polarization states. Here we
calculate the clean Raman intensity for A1g, B1g, and B2g polarizations and discuss the peak structures and
low-energy power laws which might be expected for several popular models of the superconducting gap in
these systems.
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I. INTRODUCTION

Since their discovery,1 there has been a considerable effort
to understand the origin and nature of superconductivity in
iron-pnictide materials �for early reviews see Refs. 2–4�. Ini-
tial information on the structure of the gap is often provided
by power laws in the temperature dependence of thermody-
namic and transport properties, which are related to the to-
pology of the superconducting gap in its nodal regions.
Nuclear magnetic-resonance �NMR� studies5–8 showed a
low-temperature T3 spin-lattice relaxation rate typical of a
gap with nodes. However, penetration depth
measurements9–15 have been fit both to exponential activated
T dependence, indicative of a fully gapped state, and low-T
power laws. Angle-resolved photoemission �ARPES� mea-
surements on single crystals of 122-type materials16–21 mea-
sured the spectral gap reporting isotropic or nearly isotropic
gaps on all Fermi-surface sheets. It is possible that these
differences reflect genuinely different ground states in differ-
ent materials. However, the complex interplay of multiband
effects, unconventional pairing, and disorder leaves open the
possibility that a single ground-state symmetry exists in all
the Fe pnictides and that differences in measured properties
can be understood by accounting for electronic structure dif-
ferences and disorder.22,23 It is likely that a consensus will be
reached only after careful measurements using various
probes on the same material and systematic disorder studies.

We argue here that measurement of the electronic Raman
scattering in the superconducting state can provide important
information on the structure of the bulk superconducting or-
der parameter through its sensitivity to both symmetry and
gap scales. Here we discuss the Raman scattering for some
simple models of the Fe-pnictide superconductors. In general
the energies of the peaks in the Raman intensity are directly
related to the magnitude of the gaps on the various Fermi
sheets. However, whether a given Raman polarization
weights a given gap strongly or weakly depends on the po-
larization state of the measurement via the Raman vertex �k.
This is particularly important for superconductors where the

gap is strongly momentum dependent and was exploited suc-
cessfully in cuprate materials to help determine the d-wave
symmetry in those systems.24–27 In addition, the presence of
nodes and the dimensionality of the nodal manifold may be
determined by comparison to low-energy power laws in the
Raman intensity in different polarization states.

In the Fe-pnictide materials, density-functional theory
calculations28,29 for the paramagnetic state have generally
found a multisheeted Fermi surface consisting of concentric,
nearly circular hole pockets around the � point �here referred
to as “� sheets”� and nearly circular electron pockets around

the M points, or X̃ point in the unfolded, one-Fe zone �re-
ferred to as “� sheets”�. These sheets are plotted in Fig. 1.
Spin-fluctuation models of pairing30–33 have usually found
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FIG. 1. �Color online� Fermi surface of model Fe pnictide rep-
resented in unfolded �one-Fe� Brillouin zone. The crystalline a ,b
axes are indicated in top right of the panel �blue� and the polariza-
tion geometries for incoming and scattering photon polarizations
are denoted for B1g and B2g geometries. Note that our symmetry
notation is rotated by 45° with respect to the lattice symmetries.
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that the leading pairing instability had s-wave symmetry and
noted that the next leading channel had dx2−y2 symmetry.
Wang et al.,34 who studied the pairing problem using a func-
tional renormalization-group approach within a five-orbital
framework, also found that the leading pairing instability oc-
curred in the s-wave channel and that the next leading chan-
nel had dx2−y2 symmetry. These calculations differ according
to whether or not actual nodes are found in the leading pair-
ing states, but they all find large anisotropies over the Fermi-
surface sheets not anticipated in the original predictions of
extended-s-type states with isotropic gaps which changed
sign between the � and � sheets.35,36

While ARPES experiments16–21 have reported weakly an-
isotropic gaps, this may be due to momentum resolution is-
sues and the difficulty of preparing good surfaces in these
systems at present. In particular, the samples used in these
experiments may be sufficiently dirty at the surface that con-
siderable momentum averaging, with concomitant gap aver-
aging, could be taking place.23 Angle-dependent specific-heat
measurements in a magnetic field,37 which probe the bulk,
may be feasible in the future but are difficult at present due
to the requirement of large clean crystals. Raman scattering
with use of different polarizations may therefore be the best
current method of acquiring momentum-dependent informa-
tion on the structure of the bulk superconducting order pa-
rameter. We discuss several cases below which should allow
extraction of the crude momentum dependence and possible
nodal structure of the order parameter over the Fermi sur-
face. Some of these cases have been considered in an earlier
paper by Chubukov et al.,38 who however focused solely on
the A1g polarization and examined vertex corrections due to
short-range interactions. However, they neglected “charge
backflow” effect of the long-range part of the Coulomb in-
teraction which is required to ensure charge conservation.
Here we show that for the A1g case, significant changes are to
be expected due to the coupling of the A1g Raman charge
fluctuations due to the backflow effects.

While the expressions for the B1g and B2g channels are
generally well characterized by the bare bubble calculation
for the cuprates, it is well known that the A1g contribution is
significantly more complicated due to the issue of charge
backflow as noted above and to the number of different ex-
citons which may be pulled down from a gap edge conden-
sate. In systems with several condensate pairing instabilities
lying in close proximity in parameter space, strong excitonic
peaks may occur. While the possibility of such excitonic
modes is of interest for the pnictides, in this paper we focus
on the generic quasiparticle features for Raman scattering
and will consider excitonic peaks in a future publication.
Charge backflow and Coulomb screening are explicitly in-
cluded in all A1g calculations, but pair interaction corrections
will be neglected. We will however also consider the possi-
bility that due to the form for the Raman vertices, which are
allowed when there are multiple Fermi surfaces, there can
also be backflow effects on symmetry channels other than
A1g in the Fe pnictides.

We begin in Sec. II by considering model one-band clean
systems with gaps inspired by proposals for the Fe pnictides
to illustrate what intuition we can gain regarding the Raman
response for various polarizations. In Sec. III, we consider

gaps on all four Fermi surfaces predicted by density-
functional theory. We present our conclusions in Sec. IV.

II. ELECTRONIC RAMAN SCATTERING IN
CLEAN SYSTEM

A. General theory

Raman scattering is the inelastic scattering of polarized
light from a material. �for a review see Ref. 24�. The cross
section of the scattered light is proportional to the imaginary
part of the channel-dependent Raman susceptibility

��,���� = �
0

�

d�e−i�m��T�	̃����	̃��0���i�m→w+i
. �1�

Here we will take a simple frequency independent form for
the Raman vertices �nonresonant scattering� and write the
effective Raman charge fluctuations in the � channel as

	̃� = �
k,�

�
n,m

�n,m�k�cn,�
† �k�cm,��k� , �2�

where n ,m denote band indices. �n,m�k� defines the
momentum- and polarization-dependent Raman vertices,
which may include intra- and interband transitions. Gener-
ally, the vertex is determined by both density and current
matrix elements between the conduction band and the ex-
cited states and has not been calculated for even simple met-
als such as Al. However, the polarization geometries of the
incoming and outgoing photons impose an overall symmetry
due to the way in which excitations are created in directions
determined by the electric field oscillations and classifica-
tions of the anisotropy of the Raman vertices can be em-
ployed.

In this paper, in order to focus on general features for
Raman scattering in the pnictides, we will neglect band
structure features and treat all Fermi-surface sheets as
circles. This allows for a simple symmetry classifications for
the Raman vertices as has been done in the cuprates. Ex-
panding the polarization-dependent vertices in Fermi-surface
harmonics for cylindrical Fermi surfaces,

�n���A1g = an + bn cos�4�� ,

�n���B1g = cn cos�2�� ,

�n���B2g = dn sin�2�� , �3�

with angle-independent band prefactors an ,bn ,cn ,dn setting
the overall strength of the Raman amplitudes for band n.
Since an isotropic density fluctuation vanishes for q→0, it
can be shown via Eq. �4� that the A1g contribution an to the
Raman vertex is cancelled by charge backflow and does not
contribute to the scattering cross section. This leaves the
cos�4�� as the first nonvanishing contribution in the expan-
sion.

As shown in Fig. 1, we note that our choice of coordinates
rests on the one-Fe unit cell, which is rotated by 45° with
respect to the two-Fe unit cell. Thus our symmetry notation
is electronic and not associated with the lattice principal di-
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rections, and therefore our classifications are 45° rotated
with respect to conventional lattice classifications. Using lat-
tice coordinates, what we call B1g would be B2g and vice-
versa. While this might create some confusion, it is conve-
nient to understand the interplay of the angular dependence
of the vertices and the energy gaps in the rotated one-Fe
unit-cell frame, as shown in Fig. 1. This should be kept in
mind however when one discusses, e.g., electronic excita-
tions together with lattice excitations. Then our symmetry
labels B1g and B2g would have to be interchanged.

Other forms for the Raman vertices are allowable, with
the only requirement being that they must obey the transfor-
mation rules according to the relevant point-group symme-
tries of the crystal. We note that for multisheeted Fermi sur-
faces shown in Fig. 1, there are different possible forms for
the vertices other than Eq. �9�. While the Raman vertices of
the � sheets must transform according to Eq. �9�, for the �
sheets other forms for the vertices could be admissible. This
includes, for the B1g vertex for example, a vertex which is
momentum independent on each � sheet but of opposite
sign. For the B2g vertex, a Raman vertex which is
p-wave-like on each � sheet �with a change of sign� would
also be admissible. We will explore these possibilities in Sec.
III.

For n bands crossing the Fermi level, the intraband Ra-
man response in the absence of Coulomb screening and
charge backflow is given by

�	̃,	̃��� =
1

N
�
k

�
n

�n�k�2n�k,�� , �4�

where

n�k,�� = tanh�En�k�
2kBT

	 4��n�k��2/En�k�
4En

2�k� − ��� + i
�2 �5�

is the Tsuneto function for the nth band having band disper-
sion �n�k�, energy gap �n�k�, and quasiparticle energy
En

2�k�=�n
2�k�+�n

2�k�. Taking the imaginary part of Eq. �5� we
then obtain for the Raman response at T=0,

Im �	̃,	̃��� = �
n

Im �	̃,	̃
n ���

= �
n

�NF,n

�
Re � d��n

2���
��n����2


�2 − 4��n����2
.

�6�

Since Raman scattering probes charge fluctuations in the
long-wavelength limit, the role of the long-range Coulomb
interaction is important. Isotropic charge fluctuations are
coupled across all unit cells and Raman scattering at low
energies must vanish due to particle number conservation,
leaving only an inelastic light-scattering peak at the plasmon
energy. Screening by the long-range Coulomb interaction can
be taken into account by including couplings of the Raman
charge density 	̃ to the isotropic density 	 fluctuations and is
given by

�	̃,	̃
scr = �	̃,	̃ −

�	̃,	�	,	̃

�	,	
, �7�

with

�	̃,	 = �	,	̃ =
1

N
�

n
�
k

�n�k�n�k� �8�

and

�	,	 =
1

N
�

n
�
k

n�k� . �9�

Equations �4�–�9� constitute closed-form expressions for the
intraband, nonresonant contribution to the Raman response.

It is clear that the Raman response is in general not sim-
ply additive with respect to the response calculated from
each band separately. Incident photons can create anisotropic
charge fluctuations according to the direction of the polariza-
tion light vector and those charge fluctuations relax by emit-
ting a scattered photon and redistributing charge density via
intrinsic electron-scattering mechanisms such as electron im-
purity, electron phonon, electron-electron interactions, or via
breaking of Cooper pairs. The anisotropy of the charge fluc-
tuations created with light can be controlled by aligning in-
cident and scattered photon polarization vectors, transform-
ing according to the elements of the irreducible point group
of the crystal. For a material with D4h tetragonal symmetry
and a single Fermi sheet, the B1g and B2g Raman responses
are not coupled to the long-range Coulomb interaction. As a
consequence, the Raman charge densities for these channels
do not couple to the pure charge-density channel and the
terms given in Eq. �8� vanish. However, A1g fluctuations
need not vanish over the unit cell and therefore they can
couple to isotropic charge density, giving the finite backflow
represented by the second term in Eq. �7�. We will see that
this can also occur for the B1g case for Raman vertices which
are allowed when one has multiple Fermi surfaces as formed
in the Fe pnictides.

From the expression for the Raman response we see that
in the case of an isotropic gap, �k=�, there should always
be a peak at 2�. In an unconventional superconductor, de-
pending on the polarization, this absorption peak is replaced
by a peak or other structure at 2�0, twice the maximum of
the gap over the Fermi surface. The peak will be rounded by
scattering, but still provides a measure of the magnitude of
the gaps in the system and may be compared to those deter-
mined from other experiments, e.g., ARPES and tunneling.
The B1g and B2g vertices in Eq. �3� have zeros in k space and
therefore weight the part of the Brillouin zone away from
these zeros. This is observed, e.g., in the d-wave cuprates,
where the sharp 2� peak occurs in the B1g channel only,
while a less-pronounced feature corresponding to a change in
slope occurs at the same energy in the B2g channel which
weights the nodal regions most strongly. Furthermore, the
existence of nodes in a gap creates low-energy quasiparticles
that cause a nonzero response for all frequencies. This is in
sharp contrast to fully gapped superconductors whose re-
sponse shows a sharp gap edge with no low-energy quasipar-
ticles. In what follows we consider separate cases of increas-
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ing complexity in order to display what features for Raman
scattering in a multiband system with different gap symme-
tries might be expected generically.

B. Results for some special cases

1. Single Fermi sheet

In order to understand the type of behavior found for the
multiband models of the Fe pnictides, it is useful to begin
with some special cases. Early on, motivated by the proxim-
ity of the Fe pnictides to a �� ,0� spin-density wave phase
and the multiple Fermi-surface structure found in local-
density approximation �LDA� calculations, a sign reversed
s-wave gap was proposed.35 It was suggested that spin-
fluctuation scattering of electron pairs between the � and �
Fermi sheets could lead to pairing with an isotropic s-wave
gap �0 that changed sign between the � and � Fermi sur-
faces. In this case, the Raman response would consist of a
peak onsetting at 2�0 or several peaks if there were gaps of
different magnitudes on the various Fermi surfaces. In the
absence of impurity scattering and inelastic lifetime effects,
this peak would vary as ��−2�0�−1/2 as � approaches 2�o
from above.

Alternatively, random-phase approximation �RPA� spin-
fluctuation calculations and functional renormalization-group
studies find anisotropic s-wave gaps which can even have
nodes on the � Fermi surfaces as well as nearby d-wave gaps
with nodes on the � Fermi surfaces. Here, in order to exam-
ine the Raman signatures of such states, we consider the
simple parameterization

���� =
�0

1 + r
�1 − r cos�2��� . �10�

This gap is plotted as a function of angle around a circular
Fermi surface. Note, however, that for a single Fermi surface
centered at �, this state would not have fourfold symmetry.
Instead, the Fermi surface parameterized by � is intended to
represent a model for the �1 sheet of the pnictides and the
Fermi-surface angle � is measured around �� ,0� rather than
�. When combined with the �2 sheet at �0,��, the full
s-wave symmetry of the state is restored. The gap in Eq. �10�
is normalized such that �0 is the maximum over the Fermi
surface and plotted for the values of r=r� shown in Fig. 2.
For r�1 the state has nodes on the Fermi surface and for
small values of r−1 these nodes move toward 0 and �. For
r�1, there are no nodes but for any nonzero r one has an
anisotropic gap.

In Figs. 3 and 4 we exhibit the B1g, B2g, unscreened A1g,
and screened A1g Raman responses for the gaps given by Eq.
�10�, which are shown in the leftmost panel in Fig. 2. In Fig.
3, where r=1.4, there are gap nodes on the � sheets and one
finds the expected low-frequency power-law behavior in
which both response functions vary as �, following the low-
energy behavior of the density of states, since the nodes of
the energy gap do not align with the nodes of the Raman
vertices. For the gap edge �=2�max=2�0, the B1g and un-
screened A1g spectra have a log��−2�0� singularity. For the
B2g response, there is a change of slope at 2�0 since the

nodes of the vertex align with the gap maxima. A secondary
log singularity appears at �=2�min, probed by the B1g and
A1g vertices, but not B2g. Screening, as pointed out before,
removes all log singularities from the unscreened A1g re-
sponse, leaving only a cusplike behavior at �
=2�min,2�max.

For a nodeless anisotropic gap �r=0.6� shown as the
dashed line in the �1 panel of Fig. 2, the Raman spectra are
shown in Fig. 4. In this case, there is a gap in the low-
frequency spectra. Here, for r�1, �min occurs where the
magnitude of the gap has a local minimum rather than a local
maximum as it does for r�1. This leads to a step disconti-
nuity at � /�0=0.5 for the B1g and A1g spectra rather than the
log singularity seen in Fig. 3 for r=1.6. The nodes of the
Raman vertex for the B2g response are aligned with �min,
leading to a linear onset at �=2�min rather than a step onset.
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FIG. 2. The anisotropic energy gaps around the four Fermi-
surface sheets as a function of angle � shown in Fig. 1. For the �
sheets, the solid line is for r�=1.4 and the dotted line for r�=0.6
�see Eq. �14��.
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FIG. 3. �Color online� Raman response of the state with energy
gap Eq. �10� for r=1.4. Black/gray �black/red� lines denote B1g /B2g

and light gray/dark gray �green/blue� is the unscreened/screened
A1g, respectively. Note that our symmetry classifications are accord-
ing to the geometry shown in Fig. 1. For lattice classifications, B1g

and B2g should be interchanged.
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2. Two Fermi-surface sheets

As indicated by Eq. �4�, the A1g Raman response for the
case of a multisheet Fermi surface is not in general additive
due to the Coulomb interactions and associated charge back-
flow. While no such backflow appears in the B1g or B2g chan-
nels for the present case, we will see in Sec. III that for
Raman vertices which are allowed for the Fe pnictides, there
can be Coulomb backflow contributions to the B1g channel.
To illustrate this we calculate the A1g Raman response for
two Fermi-surface sheets, where the energy gaps �1,2��� are
both proportional to �1+r cos�4��� / �1+r�, with r=0.2. For
simplicity, we take the gap maximum on one Fermi surface
to be �0 and on the other �0 /2. We also take equal Raman
vertices and density of states for each band.

Expanding Eqs. �4�–�9� for the case of two bands, the
overall Raman response can be written as

Im �sc��� = Im �1��� + Im �2��� + Im ����� , �11�

where

�1,2��� =
1

N
�
k

�1,2
2 �k�1,2�k,�� −

��k
�1,2�k�1,2�k,���2

N�k
1,2�k,��

�12�

and

����� =
�k

1�k,���k
2�k,��

N�k
�1�k,�� + 2�k,����k

�1�k�1�k,��

�k
1�k,��

−
�k

�2�k�2�k,��

�k
2�k,�� �2

. �13�

Thus for A1g, the screened Raman response can be consid-
ered as a sum of the screened response for each band, plus a
mixing term ��. Here one can see that if the energy gaps and
Raman vertices are the same for each band the mixing term
vanishes, while for all other cases it is finite, reflecting the

contribution from charge backflow. In this case, the light
scattering induces interband charge transfer in order to re-
cover particle number conservation when the charge fluctua-
tions differ on the two bands.

As illustrated in Fig. 5, the screened A1g Raman spectrum
consists of contributions from each Fermi surface with a gap
scale differing by a factor of 2 and an interference contribu-
tion coming from the charge backflow. All singularities as-
sociated with the values of the gaps at the stationary points
that would appear in the unscreened A1g channel are removed
and replaced by cusplike behavior as in the single band case.
However the structure of �sc� ��� is changed by the interfer-
ence.

Interference terms also occur if the gaps are identical on
each sheet but the Raman vertices differ. A more detailed
examination of the role of charge backflow is presented in
Ref. 27.

III. FOUR FERMI-SURFACE RAMAN SPECTRA

We would now like to extend this discussion of the fea-
tures in the Raman intensity to the four-Fermi surface model
of the Fe pnictides. Here we first consider the two sets of
����� gap variations for the four Fermi-surface sheets �
=�1, �2, �1, and �2 shown in Fig. 4. Specifically, the energy
gaps are taken to be �Fig. 2�

��1,�2
= �0

1 � r� cos�2��
1 + r�

,

��1
= − 0.8�0

1 + cos�4��
2

,

��2
= − 0.4�0

1 − cos�4��
2

. �14�

As previously discussed, these gap choices are motivated by
the anisotropic gaps found in RPA spin fluctuation and func-
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FIG. 4. �Color online� The Raman response of the state with
energy gap Eq. �10� for r=0.6. Black/gray �black/red� lines denote
B1g /B2g, respectively, light gray/dark gray �green/blue� is
unscreened/screened A1g.
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FIG. 5. �Color online� The screened A1g Raman response for
two bands with �1,2��� proportional to �1+r cos�4��� / �1+r� with
r=0.2 and the maximum gap on Fermi surface 1 equal to �0 and on
Fermi surface 2 equal to �0 /2. �black=screened A1g for band 1,
gray �red�=screened A1g for band 2, light gray �green�=mixing term,
dark gray �blue�=total response�.
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tional renormalization-group calculations. The amplitudes of
the �1 and �2 gaps have been chosen to avoid an accidental
overlap of singularities between the � and � gap extrema.
The first of these, shown by the solid curves in Fig. 2, cor-
responds to an A1g gap with nodes on the �-Fermi surfaces
�r�=1.4� and the second one is nodeless corresponding to the
dashed curves �r�=0.6�. The B1g, B2g, and A1g spectra for
these two cases are shown in Figs. 6 and 7, respectively. The
contribution from the individual Fermi surfaces are also in-
dicated.

For the B1g and B2g spectra the structures seen in the total
response are just the sum of the spectra from the individual
Fermi-surface sheets with the appropriate gaps shown in Fig.
2. For example, in Fig. 6, the B1g response for the gap with
nodes consists of a sum over different contributions coming
from the two hole Fermi surfaces �1 and �2 and the sum of
the spectra from the �1 and �2 electron Fermi-surface sheets

which are identical since Raman only probes ��� and is not
sensitive to the phase in the absence of impurities. Just as the
for the previous discussion of the single Fermi-surface case,
one can easily identify the characteristic features coming
from each Fermi surface shown in Fig. 6. The B1g Raman
response for a gap with nodes on the � sheets �red/gray
curve� exhibits log singularities at � /�0 equal to
2��,max /�0�1.5 and 2����min /�0�0.25. The �1 sheet
�green/light gray� contributes an additional log singularity at
2���1

�max /�0�1.6. Since the B1g vertex has a node at the
minimum value of the gap on the �1 sheet the discontinuity
at � /�0=0.8 is eliminated leaving only a linear onset. The
contribution of the �2 sheet has a similar linear onset at �
=0 and a change in the slope at 2���2

�max /�0�0.8 due to the
fact that the B1g Raman vertex has a node at the minimum
and maximum values of the gap on the �2 Fermi surface.

A similar discussion can be given for the B2g case shown
in the center panel of Fig. 6, where the total response is the
sum of the contribution from the individual Fermi-surface
sheets with the B2g Raman vertex. As discussed in the pre-
vious section, the screened A1g response shown in the lower
panel of Fig. 6 contains the screened contributions from each
band, plus an interference term with interference contribu-
tions coming from each pair of bands. All singularities are
removed by the backflow, leaving the cusplike behavior
which can be tied to each of the gap extrema, as done for the
other channels.

As mentioned in Sec. II A, different forms for the Raman
vertices are in principle allowable other than the ones given
in Eq. �3�, giving the Raman spectra shown in Figs. 6 and 7.
Here we consider how different forms for the Raman vertices
affect the general structure of the channel-dependent Raman
spectra. As an example, we consider the following form for
the Raman vertices:

��1,�2
���A1g = 1,

��1,�2
���A1g = − 1,

��1,�2
���B1g = cos�2�� ,

��1,�2
���B1g = � 1,

��1,�2
���B2g = sin�2�� ,

��1,�2
���B2g = sin��� . �15�

These vertices are all allowed by symmetry and have less
anisotropy than the ones considered in Eq. �3� and thus high-
light different gap structures. Moreover, due to the angle-
independent form for the B1g vertices on the � sheets,
screening must be included and the mixing terms are nonzero
to give finite contributions to the spectra.

The resulting channel-dependent spectra are shown in Fig.
8 for the Fermi sheet gaps given in Eq. �14� with r�=1.4. For
the B1g case, Raman scattering from the individual � sheets
now is canceled by backflow due to the angular-independent
Raman vertices on those sheets and two identical contribu-
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FIG. 7. �Color online� Same as Fig. 6 but for r�=0.6.

BOYD et al. PHYSICAL REVIEW B 79, 174521 �2009�

174521-6



tions arise from the � sheets, as in Fig. 6. However, an ad-
ditional mixing term arising from scattering interferences in-
volving each separate � sheet gives a large contribution to
the spectra, with peaks occurring at the energy scales given
by the energy-gap extrema on each sheet. For the B2g spec-
tra, the sinusoidal variation sin��� of the vertices on the �
sheets now allows for the highlighting of the gap maximum,
giving a peak frequency at twice the gap maximum for the �
sheets, in contrast to the spectra shown in Fig. 6. A dramatic
change of the spectra is observed for the A1g channel. Due to
backflow, the Raman response from each separate band van-
ishes identically for the constant vertices in Eq. �15�, but due
to the change in sign, the entire Raman spectra arise solely
from the mixing terms. The positions of the cusplike feature
at �=2�0 are the same as that shown in Fig. 6 for a different
form for the Raman vertices, however the overall spectra line
shape is qualitatively different. The overall structure of the
line shapes thus indicates that a proper account of the aniso-
tropy of the Raman vertices may be needed in order to obtain
a qualitative comparison to the experimental observed Ra-
man spectra. This is a topic for further study.

Finally we consider a simple sign-changing s� state on
the four sheets

��1,�2
= − �0/
2,

��1
= �0, ��2

= �0/4. �16�

Using the vertices defined by Eq. �15�, the resulting Raman
spectra are shown in Fig. 9. Here, the square-root divergence
at twice the gap value is ubiquitous, displaying both in B1g
and in B2g The only polarization difference is that the con-
tributions from the � bands for the B1g channel are screened,
in contrast to the B1g channel. Apart from this difference, the
spectra are qualitatively similar due to the mixing terms in
B1g which restore the singularity at �=1.5�0. For the A1g
channel, the divergences are screened and the response main-
tains thresholds and peaks at twice the gap energy for each
band.

IV. CONCLUSIONS

Here we have studied the Raman-scattering response for
some simple models of the Fe-pnictide superconductors.
Specifically, we considered two different anisotropic A1g
gaps, one with nodes and one without nodes, on four circular
Fermi surfaces. Besides the well-known low-frequency dif-
ferences in the spectra for nodal and non-nodal gaps, we
found a rich set of high-frequency structures arising from
stationary points of ����� on the various Fermi surfaces.
Measurements of different polarizations may allow one to
associate particular gap structures with individual Fermi-
surface sheets. If the gap has a large anisotropy as suggested
by some calculations, there will be a rich Raman spectrum
for different symmetry channels. However, if one has a rela-
tively isotropic gap, such as the proposed sign-switched s
wave, the spectrum should be simpler and sharper since for
an isotropic gap the response has a square-root singularity at
2�0 rather than the weaker log singularity found for an an-
isotropic gap.

We have also discussed some of the unusual aspects of the
Raman spectra to be anticipated in the Fe pnictides due to
their multisheeted Fermi-surface electronic structure. In par-
ticular, Coulomb backflow mixing may affect the B1g spec-
trum as well as A1g. There are other unusual aspects, such as
excitonic modes associated with short-range interactions38 or
competing order-parameter channels, which we have not ex-
plored here, but may make the spectra in these materials
even richer. Work along these lines is in progress.

Note added in proof. Neutron scattering measurements of
doped BaFe2As2 find a resonance in the superconducting
state which through the coherence factor provides phase sen-
sitive evidence of an unconventional gap.39
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